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Abstract. We derive the eikonal and transport equations, in the transverse magnetic (TM) and
electric (TE) representation, for an electric anisotropic and inhomegeneous media by using the
limit of geometrical optics. We also calculate the Poynting vector and analyse the consequences
of the Poynting theorem for our system.

We study the Lagrangian representation for interpreting the trajectories and show that the TM
ray trajectory in a uniaxial liquid crystal is that of the 2D projection of a 3D propagating ray in
an isotropic medium, constrained by a surface. As an application of the formalism, we explicitly
exhibit these surfaces for the radial and bipolar configuration in nematic droplets.

1. Introduction

The general treatment for ray tracing in inhomogeneous but isotropic media, based on the
eikonal equation [1], provides an excellent description and insight for understanding light
propagation. This phenomenon in media which are in addition anisotropic is a difficult problem
which has been extensively studied in recent years for planar geometries. In fact, for the case of
a plane wave and layered media, different procedures have been used for solving this problem.
One of the most widely utilized methods in uniaxial systems is the Barreman’s [2] 4×4 matrix
formalism which was shown to be equivalent to Maxwell’s equation for linear propagation.
Some other approaches based on the well known geometrical optics approximation, have also
been applied to describe beam propagation in planar geometries [3, 4]. Additionally, much
work has been done in studying anisotropic systems by using more restricted approaches like
the quasi-isotropic approximation of geometrical optics. An excellent review on this topic is
given in [5]. There are also some more general procedures for describing both acoustic [6] and
optics [7] of anisotropic media by using tensor eikonal, however, they do not take advantage
of the complete representation given by transverse electric (TE) and transverse magnetic (TM)
modes, which considerably simplify the treatment of nonmagnetic media.

The purpose of this work is to study the ray propagation in a general linear nonmagnetic
media by using the TM and TE mode representation. More specifically, we shall derive the TM
and TE eikonal equations and analyse their ray trajectories in their corresponding Lagrangian
representation.

To this end, this paper is organized as follows. In section 2 we deduce from Maxwell’s
equations the TE and TM eikonal equations, In section 3 we derive the corresponding
Lagrangians of the TE and TM rays, and state some analogies with isotropic media. In
section 4 we calculate the energy density and Poynting vector and generalize the intensity law
for anisotropic media. In section 5 we obtain the transport equations and derive an expression
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for the field amplitudes in terms of the optical path. In section 6 we illustrate these analogies
with two examples in nematic droplets and we summarize our work.

2. Eikonal equations

We consider a general time-harmonic field in a nonconducting inhomogeneous and anisotropic
medium. In regions free from currents and charges, Maxwell’s equations are given by

∇ × EH + ik0
↔
ε · EE = 0 ∇ · (µ EH) = 0 (1)

∇ × EE − ik0µ EH = 0 ∇ · (↔ε · EE) = 0 (2)

wherek0 = ω/c, µ is the magnetic susceptibility and
↔
ε is the dielectric tensor. Following the

usual procedure we assume the following trial form for the fields

EE = Ee(Er)eik0lW(Er) EH = Eh(Er)eik0lW(Er) (3)

wherelW(Er) is the characteristic function of Hamilton, which is equal to the difference in
optical paths of a ray propagating between two fixed point in the medium, andEe(Er), Eh(Er) are
vector functions of the position. Substituting equation (3) into equations (1), (2) and taking
the limit of the geometrical optics ,k0l � 1, we have

∇W × Eh+
↔
ε ·Ee = 0 (4)

∇W × Ee − µEh = 0 (5)

∇W · ↔ε ·Ee = 0 (6)

and

∇W · Eh = 0. (7)

These equations show that the anisotropic nature of the medium expressed by the tensor
↔
ε ,

makesW sensible for the polarization of the fieldsEe and Eh; in a similar way as happens for
anisotropic elastic media [8]. Here, we shall use an alternative approach, that is exclusive
for electromagnetic system and consists of taking advantage of the complete representation
given by the sets of TE and TM modes [9] for which the only electric or magnetic component,
respectively, of these sets is transverse. We first consider the TE modes whose only magnetic
component isEh. InsertingEh from equation (5) into (4), yields

(∇WTE × ê)2 = µεee (8)

whereê = Ee/e andεee = ê· ↔ε ·ê. Then, for the TM modes, we solve equation (4) forEe and
insert it in equation (5), to obtain

(∇WTM × ĥ)· ↔ε −1 · (∇WTM × ĥ) = µ (9)

whereĥ = Eh/h and the superscript−1 indicates the inverse tensor. Equations (8) and (9) are
the so-called eikonal or Hamilton–Jacobi equations corresponding to the TE and TM modes.
We can simplify both these equations by expressing them in terms of an orthogonal coordinate
system{q1, q2, q3}. If q1 is the coordinate alonĝh andê, equations (8) and (9) can be rewritten
as

1

h2
2

(
∂WTE

∂q2

)2

+
1

h2
3

(
∂WTE

∂q3

)2

= µε11 (10)
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and

ε−1
22

h2
3

(
∂WTM

∂q3

)2

− 2
ε−1

23

h2h3

(
∂WTM

∂q2

)(
∂WTM

∂q3

)
+
ε−1

33

h2
2

(
∂WTM

∂q2

)2

= µ (11)

wherehi, (i = 2, 3) are the scale factors andε−1
ij are the elements of

↔
ε −1. Notice that, on the

one hand, equation (10) shows that the TE rays propagate as in an isotropic medium with an
index refractionn2 = µε11; which is a consequence of having a unique electric component.
On the other hand, equation (11) has a different structure which implies a distinct behaviour
for the TM rays. Similar and more complicated eikonal equations have been found in the
context of geometrical acoustics where there exists three independent polarizations, one quasi-
longitudinal and two quasi-transverse, that in the general case, cannot be decoupled [10]. Next
we analyse the Lagrangian representations of the eikonal equations.

3. Lagrange dynamics

The Hamiltonian representation of equations (10) and (11) is obtained by rewriting them in
terms of the variablespi = ∂W

∂qi
, (i = 1, 2, 3), which are known as the ray components. It

leads to

p2
2

h2
2

+
p2

3

h2
3

= µε11 (12)

and

ε−1
33

h2
2

p2
2 − 2

ε−1
23

h2h3
p2p3 +

ε−1
22

h2
3

p2
3 = µ. (13)

It should be mentioned that from the HamiltonianH = µ, we can calculate the four first-
order diferential equations known as Hamilton’s equation of which three are independent,
since equation (13) allows us to write one in terms of the others. From these equations and
their boundary conditions we can determine the ray trajectories for a particular system as was
performed in previous works [11,12]. Here, we shall study the Lagrangian formulation of the
TM modes which provide us with a useful insight into the understanding of the behaviour of
its ray trajectories. Hamilton’s equation yields

(q̇2q̇3) = 2

[ ε−1
33

h2
2
− ε−1

23
h2h3

− ε−1
23
h2h3

ε−1
22

h2
3

](
p2

p3

)
.

Hence, the LagrangianL associated toH is obtained by using the Legendre transform. It leads
to

L = ε−1
33 h

2
2q̇

2
2 − 2ε−1

23 h2h3q̇2q̇3 + ε−1
22 h

2
3q̇

2
3 (14)

whereq̇i = dqi/dτ are the components of a tangent vector to the trajectory. A ray whose
Lagrangian is given by equation (14) does not experience a position dependent refraction
index, instead it has an anisotropic kinetic energy in a curved space. However, for the case of
a uniaxial liquid crystal [14] whereεij = ε⊥δij +εaninj , we can interpret the system as the 2D
projection in a plane described byq2 andq3, of a 3D ray propagation whose degrees of freedom
areq2, q3 andz and which is confined by a constriction of the form dz = f2dq2 +f3dq3, where
f2 andf3 are two functions ofq2 andq3. This allows us to write the Lagrangian of the system
in the following way:

ε⊥L = ż2 + h2
2q̇

2
2 + h2

3q̇
2
3 − λ(ż− f2(q1, q3)q̇2 − f3(q2, q3)q̇3) (15)
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whereλ is the Lagrange multiplier. Here,f2 andf3 are to be determined by substitutingz
in terms ofq2 andq3 given by the constriction and by comparing its terms with the ones of
equation (14). This leads to the explicit expression for the constriction given by

dz = −
√
εa

ε‖
(n3h2dq2 − n2h3dq3). (16)

By applying the Lagrange equation to the variablesλ andz, we find thatλ is given by

λ = λ0 − 2

√
εa

ε⊥
Ev⊥ · n̂⊥ (17)

whereλ0 is an integration constant andEv⊥ = h2q̇2ê2 +h3q̇3ê3 is the velocity component in the
q1− q2 plane, and̂n⊥ = n1ê1− n2ê2.

Because the constriction given by equation (16) depends on the configuration angleψ ,
in general terms dz is not an exact differential

∮
dz 6= 0, and as a consequence, it is not

always possible to find a surface of the formz = z(q1, q2), which means that equation (16)
is a nonholomic constriction [13]. However, from Pfaffian theory [15], we know that for a
differential with two independent variables, it is always possible to find an integration factor
η(q1, q2), such that the ratio d0 = dz/η(q1, q2) is an exact differential

∮
d0 = 0, and thus

there exists a surface of the form0 = 0(q1, q2). Hence, in terms of this new variable0 which
makes the constriction holonomic, the Lagrangian of the particle adopts the following form:

L = η(q1, q2)0̇
2 + h2

1q̇
2
1 + h2

2q̇
2
2 − λ∗(0 − 0(q1, q2)). (18)

Note that in terms of the new variable0, η(q1, q2) plays the role of its scale factor. Finally,
the surface can be constructed graphically, by rewriting equation (16) as

Ev ·
(
0ẑ +

√
εa

ε⊥
n̂⊥

)
= 0 (19)

whereEv = 0̇ẑ + h1q̇1ê1 + h2q̇2ê2 is the tangent vector to the ray. This allow us to identify
µẑ +
√
εa/ε⊥n̂⊥ as the normal vector to the surface.

4. Energy conservation

It is interesting to calculate the physical quantities involved in the Poynting theorem within

the accuracy of geometrical optics. First, substitution for
↔
ε · Ee from equation (4) and for

Eh∗ from equation (5) into the time averages of the magnetic and electric energy densities,

〈we〉 = D · E∗/16π = Ee∗· ↔ε · Ee/16π and〈wm〉 = EB · EH ∗/16π = µEh∗ · Eh/16π , gives

〈we〉 = 〈wm〉 = − 1

16π
Ee ∗ · (∇W × Eh)

which is the same result as that of isotropic media and is valid for both TM and TE modes.
Second, the time average of the Poynting vector〈−→S 〉 = cRe(

−→
E × −→H ∗)/8π , for the TM

modes, is given by

〈−→S TM〉 = c

8π
Re(Eh∗× ↔ε −1 · ∇WTM × Eh) (20)

whose explicit form for those modes treated in section 2 is

〈−→S TM〉 = I
[(

ε−1
33

h2

∂WTM

∂q2
− ε

−1
32

h3

∂WTM

∂q3

)
ê2 +

(
ε−1

22

h3

∂WTM

∂q3
− ε

−1
23

h2

∂WTM

∂q2

)
ê3

]
(21)
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whereI ≡ cµ|Eh|2/8π denotes the intensity of the incident beam. Hence,〈−→S TM〉 is no longer
parallel to the wavevector∇WTM for anisotropic media, but it points in the direction of the
energy propagation. In this way, denoting byEr(s) the position vector of a point in a ray,
considered as a function of the length of arcs, the ray equation can be written as

dEr(s)
ds
= 〈
−→
S 〉
S

(22)

where S = |〈−→S 〉|. Notice, from the definition of〈−→S 〉, that the electric and magnetic
fields are orthogonal to the ray at every point as should be expected. Now, to calculate
the refraction indexn of this medium we use the definition for the optical length of the curve
W(P1)−W(P2) =

∫ P2

P1
n ds, which allows us to write

n = dW

ds
= dEr

ds
· ∇W = 〈

−→
S 〉
S
· ∇W. (23)

Substitution of〈−→S 〉 · ∇WTM from equation (9) into (23) yields

nTM = dWTM

ds
= I

S
(24)

whose explicit form for the TM modes discussed in section 2 is given by

nTM = µ√(
ε−1

22
h3

∂WTM
∂q3
− ε−1

23
h2

∂WTM
∂q2

)2
+
(
ε−1

33
h2

∂WTM
∂q2
− ε−1

32
h3

∂WTM
∂q3

)2
. (25)

Similarly, the time average of the Poynting vector for the TE modes is simply given by

〈−→S TE〉 = c

8πµ
Re(Ee ×∇WTE × Ee ∗) (26)

so thatnTE can be calculated by inserting equation (26) into equation (23) and using the relation
(8). It leads to

nTE = dWTE

ds
= c|Ee|2εee

8πS
. (27)

Since from equations (26) and (8) we have thatSTE = c|Ee|2
√
εee/µ/8π , thennTE = √µεee

has the usual form for isotropic media. It should be noted that the fact that
−→
S is not parallel to

∇WTM is the behaviour expected for anisotropic media and has been widely studied for elastic
propagation [10].

Finally, for a nonconducting medium where no mechanical work is done, the Poynting
theorem reduces [1] to

∇ · −→S = I∇ · (−→S /I) + (
−→
S /I) · ∇I = 0. (28)

For the TM modes let us introduce the operator

∂

∂τ
≡ 1

I

−→
S TM · ∇ (29)

where by constructionτ is a parameter which specifies the position along the ray. Hence,
equation (28) can be written as

∂

∂τ
ln(I ) = −∇ · (−→S TM/I) (30)
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whose solution is given by

I = e−
∫ τ dτ ∇·(−→S TM/I). (31)

Using equations (29) and (9), we can expressτ in terms ofs, that is dτ = IdW /(
−→
S ·∇WTM) =

dWTM = nTMds. Thus, after taking the integration limitss1 ands2, equation (31) takes the
form

I2

I1
= e−

∫ s2
s1

ds nTM∇·(ESTM/I) (32)

which is known as the law intensity. We should mention that this relation allows us to express

I just in terms ofWTM and
↔
ε −1 components, as can be seen from equation (21). Analogously,

for the TE modes we can directly find the following expression

I2

I1
= e−

∫ s2
s1

ds ∇2WTE/nTE (33)

which is similar to the known expression for isotropic media.

5. Transport equations

In section 2 the eikonal equation was derived by using Maxwell’s equation (1), (2), but it may
also be derived from the wave equations for the electric and magnetic field vectors given by

∇ × (↔ε −1 · ∇ × EH)− k2
0µ
EH = 0 (34)

∇ × (∇ × EE)− k2
0µ
↔
ε · EE = 0. (35)

Furthermore, this alternative systematic procedure provides additionally upper-order correction
terms which lead to the transport equations for the amplitude fields. Substitution of equation
(3) into equations (34), (35) leads to

0= 1

(k0l)2
MM(hµ,WTM +

i

k0l
LM(hµ,WTM +KM(hµ,WTM

0= 1

(k0l)2
ME(eµ,WTE) +

i

k0l
LE(eµ,WTE) +KE(eµ,WTE)

(36)

where

KE(eµ,WTE) = εijkεknµeµ ∂WTE

∂qj

∂WTE

∂qn
− εiµeµ (37)

LE(eµ,WTE) = εijkεknµ
[
∂WTE

∂qj

∂eµ

∂qn
+
∂WTE

∂qn

∂eµ

∂qj
+ eµ

∂2WTE

∂qj∂qn

]
(38)

ME(eµ,WTM) = εijkεknµ ∂2eµ

∂qj∂qn
(39)

KM(hµ,WTM) = εijkε−1
kmεmnµhµ

∂WTM

∂qj

∂WTM

∂qn
− hµ (40)

LM(hµ,WTM) = εijkε−1
kmεmnµ

[
∂WTM

∂qj

∂hµ

∂qn
+
∂WTM

∂qn

∂hµ

∂qj
+ hµ

∂2WTM

∂qj∂qn

]
(41)

and

MM(hµ,W) = εijkε−1
kmεmnµ

∂2hµ

∂qj∂qn
. (42)
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Hereεijk is the Levi-Cevita tensor. To first-order approximation we take the dominant terms of
equations (34) and (35), that isKE(eµ,W) = KM(hµ,W) = 0, and arrive consistently at the
eikonal equations given by equations (8) and (9). To second-order approximation the terms
LE andLM need to be retained, and the amplitude vectors are related with the eikonals by the
expressionsLE(eµ,W) = 0 andLM(hµ,W) = 0, that is

0= εijkε−1
kmεmnµ

[
∂WTM

∂qj

∂hµ

∂qn
+
∂WTM

∂qn

∂hµ

∂qj
+ hµ

∂2WTM

∂qj∂qn

]
(43)

0= εijkεknµ
[
∂WTE

∂qj

∂eµ

∂qn
+
∂WTE

∂qn

∂eµ

∂qj
+ eµ

∂2WTE

∂qj∂qn

]
. (44)

If we multiply equations (43) and (44) byhi and ei respectively, and write the resulting
expressions for the TM and TE discussed in section 2, it leads to:

0= ∂|Eh|2
∂τ

+

(
ε−1

33

h2
2

∂2WTM

∂q2
2

− 2
ε−1

23

h2h3

∂2WTM

∂q2∂q3
+
ε−1

22

h2
3

∂2WTM

∂q2
3

)
|Eh|2 (45)

0= ∂|Ee|2
∂τ

+

(
1

h2
2

∂2WTE

∂q2
2

+
1

h2
3

∂2WTE

∂q2
3

)
|Ee|2 (46)

where we have used the operator∂/∂τ introduced by equation (29). This expressions allow
us to determine|Eh|2 and |Ee|2 in terms ofW and the dielectric tensor components. Here, in
contrast to the usual procedure for isotropic media, we do not need an equation for the unitary
vectorsĥ andê because they are already determined by the TM and TE modes selection.

6. Examples in nematics

As an illustrative application of our formalism let us consider a nematic droplet of radiusR

whose configuration could be either the radial or the axial ones, for which the director can be
expressed in spherical coordinates asn̂ = sinψ(r, θ)êr + cosψ(r, θ)êθ , whereψ is an angle
measured from̂eθ and contained in the plane defined by this vector andêr ; which are the unit
vectors in the directions of increasingθ andr, respectively. Becausên does not depend onφ,
it is convenient to choosêeφ as the transverse direction. Hence, sinceε11 in equation (12) for
TE modes is a constant the TE ray trajectories are straight lines for both configurations.

On the other hand the TM modes are described by equation (13) withq2 = r andq3 = θ,
so that its corresponding Lagrangian can be expressed as equation (15), where the constriction
is given by

dz = −√εa/ε‖(cosψdr − sinψr dθ). (47)

We first consider the radial structure for whichψ = π/2 and we can chose for simplicity
η = 1, hence the constraining surface is given by one branch of the multivalued function
0 = √εa/ε‖rθ , which has been plotted in figure 1 as a function ofz ≡ r cosθ andρ ≡ r sinθ .

Because of its curvature, this constriction makes parallel rays diverge from their initial
direction in such a way that the central rays are deflected more than the rest of the rays.
Furthermore, besides the normal incident ray which propagates without being deviated, no
one ray is able to reach a solid angle located behind the droplet; that is to say, the defocusing
effect of the droplet causes the presence of a dark zone behind of the sphere (see figure 2).

Another example is the bipolar configuration for which the nematic’s director (optical
axis) is induced to be aligned parallel to the droplet boundary, that is to sayn̂(r = R) = êr .
This configuration presents two topological defects (poles) on the boundary, located atθ = 0
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Figure 1. Constriction surface0 versusρ andz associated to the ray trajectories in a nematic
droplet in the radial configration.

Figure 2. Schematic representation of the TM modes and a set of parallel rays in a nematic droplet.
Here, the dark zone is also shown which is an unreachable region for these rays.

andθ = π , wheren̂ is not well defined. The nematic’s orientation in the whole sphere is
obtained by minimizing an elastic free-energy density whose solution can be asymptotically
approximated by the expression [12] tanψ = (r/R − 1) cotθ . Substitution of this relation
into equation (47) leads to

d0/0 = −√εa/ε‖(−dθ tanθ + dx (x − 1)/x)
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Figure 3. The same as in figure 1 but for the bipolar configuration.

where η was chosen asη = (r/R0) cosθ/
√

sin2 θ + (r/R − 1)2 cos2 θ . Solving this

differential expression we obtain the surface0 = (R cosθe−r/R/r)
√
∈a/∈‖ which has the

form of a screened bipolar electrostatic potential raised to the power
√
εa/ε‖. In figure 3 we

plot 0 as a function ofz andρ. In this case, the resulting trajectories are more complicated
but some qualitative characteristics can be inferred. First, the rays are forced to surround the
central peaks of the surface and second they are deflected when crossing the line located at
z = 0.

We have derived the eikonal and transport equations for the TM and TE rays for a general
nonmagnetic linear medium. We calculated the electromagnetic energy density, the Poynting
vector, the effective index refraction and the law intensity for both the TM and the TE modes.
Some analogies for interpreting their corresponding Lagrangians in terms of isotropic media
were discussed. It seems that these results are relatively simple and applicable to a large
number of systems.
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